Parquet Brick Floor Texture | Free PBR free download

. Formats: PNG . Free for personal & commercial use.

Preview — Parquet Brick Floor Texture | Free PBR

IDparquet-brick-floor-texture-free-pbr
Brick
PNG
Size1k (1024x1024px), 2k (2048x2048px), 4k (4096x4096px), 8k (8192x8192px)
sRGB

This parquet brick floor texture features an intricate arrangement of red bricks laid in a classic parquet pattern, showcasing a durable mineral substrate typical of fired clay bricks. The surface presents subtle variations in color and grain orientation, enhanced by iron oxide pigments that give the bricks their characteristic warm red hue. The binder in this material is the natural ceramic matrix formed during firing, while the mortar joints, visible in the texture, act as a fine aggregate that complements the overall composition. The bricks exhibit a slightly weathered, matte finish with low to medium porosity, reflecting years of pedestrian use and environmental exposure without significant surface erosion.

In Physically Based Rendering (PBR), this texture excels through its detailed BaseColor/Albedo map, capturing the nuanced reds and color gradients of the bricks and mortar. The Normal map emphasizes the subtle depth and roughness created by the brick edges and grout lines, while the Roughness channel balances smooth and coarse areas, replicating the natural finish of a well-trodden pavement. Metallic values remain near zero, consistent with the non-metallic ceramic material, and the Ambient Occlusion map enhances shadowing within the brick joints and surface imperfections. The Height/Displacement map provides realistic elevation differences between bricks and mortar, ideal for enhanced parallax effects or tessellation in game engines.

This high-quality texture is available in up to 8K resolution, ensuring exceptional detail and sharpness for close-up renders. It is fully optimized for seamless integration into popular 3D software such as Blender, Unreal Engine, and Unity, making it suitable for architectural visualization, game environments, or virtual reality projects. For best results, adjusting the UV scale to maintain realistic brick dimensions and fine-tuning the roughness parameter can help achieve the desired level of surface reflectivity and wear.

How to Use These Seamless PBR Textures in Blender

This guide shows how to connect a full PBR texture set to Principled BSDF in Blender (Cycles or Eevee). Works with any of our seamless textures free download, including PBR PNG materials for Blender / Unreal / Unity.

What’s inside the download

  • *_albedo.png — Base Color (sRGB)
  • *_normal.png — Normal map (Non-Color)
  • *_roughness.png — Roughness (Non-Color)
  • *_metallic.png — Metallic (Non-Color)
  • *_ao.png — Ambient Occlusion (Non-Color)
  • *_height.png — Height / Displacement (Non-Color)
  • *_ORM.png — Packed map (R=AO, G=Roughness, B=Metallic, Non-Color)

Quick start (Node Wrangler, 30 seconds)

  1. Enable the addon: Edit → Preferences → Add-ons → Node Wrangler.
  2. Create a material and select the Principled BSDF node.
  3. Press Ctrl + Shift + T and select the maps albedo, normal, roughness, metallic (skip height and ORM for now) → Open. The addon wires Base Color, Normal (with a Normal Map node), Roughness, and Metallic automatically.
  4. Add AO and Height using the “Manual wiring” steps below (5 and 6).

Manual wiring (full control)

  1. Create a material (Material Properties → New) and open the Shader Editor.
  2. Add an Image Texture node for each map. Set Color Space:
    • AlbedosRGB
    • AO, Roughness, Metallic, Normal, Height, ORMNon-Color
  3. Connect to Principled BSDF:
    • albedoBase Color
    • roughnessRoughness
    • metallicMetallic (for wood this often stays near 0)
    • normalNormal Map node (Type: Tangent Space) → Normal of Principled. If details look “inverted”, enable Invert Y on the Normal Map node.
  4. Ambient Occlusion (AO):
    • Add a MixRGB (or Mix Color) node in mode Multiply.
    • Input A = albedo, Input B = ao, Factor = 1.0.
    • Output of Mix → Base Color of Principled (replaces the direct albedo connection).
  5. Height / Displacement:
    Cycles — true displacement
    1. Material Properties → SettingsDisplacement: Displacement and Bump.
    2. Add a Displacement node: connect heightHeight, set Midlevel = 0.5, Scale = 0.02–0.08 (tune to taste).
    3. Output of Displacement → Material Output → Displacement.
    4. Add geometry density (e.g., Subdivision Surface) so displacement has polygons to work with.
    Eevee (or lightweight Cycles) — bump only
    1. Add a Bump node: heightHeight.
    2. Set Strength = 0.2–0.5, Distance = 0.05–0.1, and connect Normal output to Principled’s Normal.

Using the packed ORM texture (optional)

Instead of separate AO/Roughness/Metallic maps you can use the single *_ORM.png:

  1. Add one Image Texture (Non-Color) → Separate RGB (or Separate Color).
  2. R (red) → AO (use it in the Multiply node with albedo as above).
  3. G (green) → Roughness of Principled.
  4. B (blue) → Metallic of Principled.

UVs & seamless tiling

  1. These textures are seamless. If your mesh has no UVs, go to UV EditingSmart UV Project.
  2. For scale/repeat, add Texture Coordinate (UV)Mapping and plug it into all texture nodes. Increase Mapping → Scale (e.g., 2/2/2) to tile more densely.

Recommended starter values

  • Normal Map Strength: 0.5–1.0
  • Bump Strength: ~0.3
  • Displacement Scale (Cycles): ~0.03

Common pitfalls

  • Wrong Color Space (normals/roughness/etc. must be Non-Color).
  • “Inverted” details → enable Invert Y on the Normal Map node.
  • Over-strong relief → lower Displacement Scale or Bump Strength.

Example: Download Wood Textures and instantly apply parquet or rustic planks inside Blender for architectural visualization.

To add the downloaded texture, go to Add — Texture — Image Texture.



Add a node and click the Open button.



Select the required texture on your hard drive and connect Color to Base Color.


AITEXTURED Tools

Build, preview, and export seamless PBR materials. Generate full map sets from a single image, inspect them in a real-time WebGL viewer, and re-package maps for Unreal, Unity, and Blender—directly in your browser.